Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 635
Filtrar
1.
Clinics (Sao Paulo) ; 79: 100350, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38636197

RESUMO

OBJECTIVE: The present study aimed to investigate FOXO3a deregulation in Uterine Smooth Muscle Tumors (USMT) and its potential association with cancer development and prognosis. METHODS: The authors analyzed gene and protein expression profiles of FOXO3a in 56 uterine Leiomyosarcomas (LMS), 119 leiomyomas (comprising conventional and unusual leiomyomas), and 20 Myometrium (MM) samples. The authors used techniques such as Immunohistochemistry (IHC), FISH/CISH, and qRT-PCR for the present analyses. Additionally, the authors conducted an in-silico analysis to understand the interaction network involving FOXO3a and its correlated genes. RESULTS: This investigation revealed distinct expression patterns of the FOXO3a gene and protein, including both normal and phosphorylated forms. Expression levels were notably elevated in LMS, and Unusual Leiomyomas (ULM) compared to conventional Leiomyomas (LM) and Myometrium (MM) samples. This upregulation was significantly associated with metastasis and Overall Survival (OS) in LMS patients. Intriguingly, FOXO3a deregulation did not seem to be influenced by EGF/HER-2 signaling, as there were minimal levels of EGF and VEGF expression detected, and HER-2 and EGFR were negative in the analyzed samples. In the examination of miRNAs, the authors observed upregulation of miR-96-5p and miR-155-5p, which are known negative regulators of FOXO3a, in LMS samples. Conversely, the tumor suppressor miR-let7c-5p was downregulated. CONCLUSIONS: In summary, the outcomes of the present study suggest that the imbalance in FOXO3a within Uterine Smooth Muscle Tumors might arise from both protein phosphorylation and miRNA activity. FOXO3a could emerge as a promising therapeutic target for individuals with Unusual Leiomyomas and Leiomyosarcomas (ULM and LMS), offering novel directions for treatment strategies.


Assuntos
Proteína Forkhead Box O3 , Leiomioma , Neoplasias Uterinas , Humanos , Feminino , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia , Neoplasias Uterinas/metabolismo , Pessoa de Meia-Idade , Leiomioma/genética , Leiomioma/patologia , Leiomioma/metabolismo , Adulto , Imuno-Histoquímica , Regulação Neoplásica da Expressão Gênica/genética , Leiomiossarcoma/genética , Leiomiossarcoma/patologia , Leiomiossarcoma/metabolismo , Tumor de Músculo Liso/genética , Tumor de Músculo Liso/patologia , Tumor de Músculo Liso/metabolismo , Regulação para Cima , MicroRNAs/genética , MicroRNAs/metabolismo , Prognóstico , Idoso , Miométrio/metabolismo , Miométrio/patologia
2.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 279-289, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38645862

RESUMO

Objective: To identify inflamm-aging related biomarkers in osteoarthritis (OA). Methods: Microarray gene profiles of young and aging OA patients were obtained from the Gene Expression Omnibus (GEO) database and aging-related genes (ARGs) were obtained from the Human Aging Genome Resource (HAGR) database. The differentially expressed genes of young OA and older OA patients were screened and then intersected with ARGs to obtain the aging-related genes of OA. Enrichment analysis was performed to reveal the potential mechanisms of aging-related markers in OA. Three machine learning methods were used to identify core senescence markers of OA and the receiver operating characteristic (ROC) curve was used to assess their diagnostic performance. Peripheral blood mononuclear cells were collected from clinical OA patients to verify the expression of senescence-associated secretory phenotype (SASP) factors and senescence markers. Results: A total of 45 senescence-related markers were obtained, which were mainly involved in the regulation of cellular senescence, the cell cycle, inflammatory response, etc. Through the screening with the three machine learning methods, 5 core senescence biomarkers, including FOXO3, MCL1, SIRT3, STAG1, and S100A13, were obtained. A total of 20 cases of normal controls and 40 cases of OA patients, including 20 cases in the young patient group and 20 in the elderly patient group, were enrolled. Compared with those of the young patient group, C-reactive protein (CRP), interleukin (IL)-6, and IL-1ß levels increased and IL-4 levels decreased in the elderly OA patient group (P<0.01); FOXO3, MCL1, and SIRT3 mRNA expression decreased and STAG1 and S100A13 mRNA expression increased (P<0.01). Pearson correlation analysis demonstrated that the selected markers were associated with some indicators, including erythrocyte sedimentation rate (ESR), IL-1ß, IL-4, CRP, and IL-6. The area under the ROC curve of the 5 core aging genes was always greater than 0.8 and the C-index of the calibration curve in the nomogram prediction model was 0.755, which suggested the good calibration ability of the model. Conclusion: FOXO3, MCL1, SIRT3, STAG1, and S100A13 may serve as novel diagnostic biomolecular markers and potential therapeutic targets for OA inflamm-aging.


Assuntos
Envelhecimento , Biomarcadores , Biologia Computacional , Aprendizado de Máquina , Osteoartrite , Humanos , Osteoartrite/genética , Osteoartrite/diagnóstico , Osteoartrite/metabolismo , Biomarcadores/metabolismo , Biomarcadores/sangue , Biologia Computacional/métodos , Envelhecimento/genética , Inflamação/genética , Inflamação/metabolismo , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Senescência Celular/genética , Sirtuína 3/genética , Sirtuína 3/metabolismo , Perfilação da Expressão Gênica , Idoso , Masculino
3.
Arch Pharm (Weinheim) ; 357(4): e2300631, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574101

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a common liver disorder affecting a quarter of the global residents. Progression of NAFL into nonalcoholic steatohepatitis (NASH) may cause cirrhosis, liver cancer, and failure. Gut microbiota imbalance causes microbial components translocation into the circulation, triggering liver inflammation and NASH-related fibrosis. MicroRNAs (miRNAs) regulate gene expression via repressing target genes. Exosomal miRNAs are diagnostic and prognostic biomarkers for NAFL and NASH liver damage. Our work investigated the role of the gut microbiota in NAFLD pathogenesis via the lipopolysaccharide/toll-like receptor 4/Forkhead box protein O3 (LPS/TLR-4/FoxO3) pathway and certain miRNAs as noninvasive biomarkers for NAFL or its development to NASH. miRNA expression levels were measured using quantitative reverse transcription polymerase chain reaction (qRT-PCR) in 50 NAFL patients, 50 NASH patients, and 50 normal controls. Plasma LPS, TLR-4, adiponectin, peroxisome proliferator-activated receptor γ (PPAR-γ), and FoxO3 concentrations were measured using enzyme-linked immunosorbent assay (ELISA). In NAFL and NASH patients, miR-122, miR-128, FoxO3, TLR-4, LPS, and PPAR-γ were upregulated while miR-200, miR-298, miR-342, and adiponectin were downregulated compared with the normal control. The examined miRNAs might distinguish NAFL and NASH patients from the normal control using receiver operating characteristic analysis. Our study is the first to examine these miRNAs in NAFLD. Our findings imply that these are potentially promising biomarkers for noninvasive early NAFL diagnosis and NASH progression. Understanding the LPS/TLR-4/FoxO3 pathway involvement in NAFL/NASH pathogenesis may aid disease management.


Assuntos
MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Lipopolissacarídeos/farmacologia , Adiponectina/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Relação Estrutura-Atividade , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores/metabolismo , Fígado/metabolismo
4.
Cell Biol Toxicol ; 40(1): 22, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630149

RESUMO

Uremic encephalopathy (UE) poses a significant challenge in neurology, leading to the need to investigate the involvement of non-coding RNA (ncRNA) in its development. This study employed ncRNA-seq and RNA-seq approaches to identify fundamental ncRNAs, specifically circRNA and miRNA, in the pathogenesis of UE using a mouse model. In vitro and in vivo experiments were conducted to explore the circRNA-PTPN4/miR-301a-3p/FOXO3 axis and its effects on blood-brain barrier (BBB) function and cognitive abilities. The research revealed that circRNA-PTPN4 binds to and inhibits miR-301a-3p, leading to an increase in FOXO3 expression. This upregulation results in alterations in the transcriptional regulation of ZO-1, affecting the permeability of human brain microvascular endothelial cells (HBMECs). The axis also influences the growth, proliferation, and migration of HBMECs. Mice with UE exhibited cognitive deficits, which were reversed by overexpression of circRNA-PTPN4, whereas silencing FOXO3 exacerbated these deficits. Furthermore, the uremic mice showed neuronal loss, inflammation, and dysfunction in the BBB, with the expression of circRNA-PTPN4 demonstrating therapeutic effects. In conclusion, circRNA-PTPN4 plays a role in promoting FOXO3 expression by sequestering miR-301a-3p, ultimately leading to the upregulation of ZO-1 expression and restoration of BBB function in mice with UE. This process contributes to the restoration of cognitive abilities.


Assuntos
Encefalopatias , MicroRNAs , Humanos , Barreira Hematoencefálica , RNA Circular/genética , Células Endoteliais , Cognição , MicroRNAs/genética , Proteína Forkhead Box O3/genética , Proteína Tirosina Fosfatase não Receptora Tipo 4
5.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612866

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is highly malignant, with a 5-year survival rate of less than 10%. Furthermore, the acquisition of anticancer drug resistance makes PDAC treatment difficult. We established MIA-GEM cells, a PDAC cell line resistant to gemcitabine (GEM), a first-line anticancer drug, using the human PDAC cell line-MIA-PaCa-2. Microtubule-associated serine/threonine kinase-4 (MAST4) expression was increased in MIA-GEM cells compared with the parent cell line. Through inhibitor screening, dysregulated AKT signaling was identified in MIA-GEM cells with overexpression of AKT3. MAST4 knockdown effectively suppressed AKT3 overexpression, and both MAST4 and AKT3 translocation into the nucleus, phosphorylating forkhead box O3a (FOXO3) in MIA-GEM cells. Modulating FOXO3 target gene expression in these cells inhibited apoptosis while promoting stemness and proliferation. Notably, nuclear MAST4 demonstrated higher expression in GEM-resistant PDAC cases compared with that in the GEM-sensitive cases. Elevated MAST4 expression correlated with a poorer prognosis in PDAC. Consequently, nuclear MAST4 emerges as a potential marker for GEM resistance and poor prognosis, representing a novel therapeutic target for PDAC.


Assuntos
Antineoplásicos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Resistencia a Medicamentos Antineoplásicos/genética , Microtúbulos , Gencitabina , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Proteína Forkhead Box O3/genética , Proteínas Proto-Oncogênicas c-akt , Proteínas Associadas aos Microtúbulos , Proteínas Serina-Treonina Quinases
6.
Am J Physiol Gastrointest Liver Physiol ; 326(3): G247-G251, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38193202

RESUMO

The Forkhead box O3 (FOXO3) transcription factor regulates the expression of genes critical for diverse cellular functions in homeostasis. Diminished FOXO3 activity is associated with human diseases such as obesity, metabolic diseases, inflammatory diseases, and cancer. In the mouse colon, FOXO3 deficiency leads to an inflammatory immune landscape and dysregulated molecular pathways, which, under various insults, exacerbates inflammation and tumor burden, mimicking characteristics of human diseases. This deficiency also results in dysregulated lipid metabolism, and consequently, the accumulation of intracellular lipid droplets (LDs) in colonic epithelial cells and infiltrated immune cells. FOXO3 and LDs form a self-reinforcing negative regulatory loop in colonic epithelial cells, neutrophils, and macrophages, which is associated with inflammatory bowel disease and colon cancer, particularly in the context of obesity.


Assuntos
Neoplasias do Colo , Fatores de Transcrição Forkhead , Animais , Camundongos , Humanos , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Neoplasias do Colo/metabolismo , Obesidade
7.
Mol Biol Rep ; 51(1): 196, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270719

RESUMO

Due to its role in apoptosis, differentiation, cell cycle arrest, and DNA damage repair in stress responses (oxidative stress, hypoxia, chemotherapeutic drugs, and UV irradiation or radiotherapy), FOXO3a is considered a key tumor suppressor that determines radiotherapeutic and chemotherapeutic responses in cancer cells. Mutations in the FOXO3a gene are rare, even in cancer cells. Post-translational regulations are the main mechanisms for inactivating FOXO3a. The subcellular localization, stability, transcriptional activity, and DNA binding affinity for FOXO3a can be modulated via various post-translational modifications, including phosphorylation, acetylation, and interactions with other transcriptional factors or regulators. This review summarizes how proteins that interact with FOXO3a engage in cancer progression.


Assuntos
Proteína Forkhead Box O3 , Neoplasias , Humanos , Acetilação , Apoptose , Diferenciação Celular , Neoplasias/genética , Fatores de Transcrição , Proteína Forkhead Box O3/genética
8.
Gene ; 904: 148221, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38286271

RESUMO

Recent studies have indicated a connection between Forkhead box O3a protein and coronary artery disease, yet the exact role of FOXO3a in the regulation of metabolic processes and apoptosis in vascular endothelial cells is still unknown. Therefore, we investigated the role of FOXO3a on target genes in a human vascular endothelial cell line. Through the utilization of high-throughput sequencing technology, we analyzed gene expression profiles and alternative splicing patterns in human vascular endothelial cells with FOXO3a over expression. This study identified 419 DEGs between FOXO3a-OE HUVEC model and control cells. KEGG analysis indicated that the upregulated genes were mainly enriched in inflammation-related signaling pathways, and the downregulated genes were enriched in lipid metabolism-related pathways.


Assuntos
Células Endoteliais , Fatores de Transcrição Forkhead , Humanos , Apoptose/genética , Células Endoteliais/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Transdução de Sinais/genética
9.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166975, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38043828

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) are pluripotent stem cells capable of differentiating into osteocytes, adipocytes and chondrocytes. However, in osteoporosis, the balance of differentiation is tipped toward adipogenesis and the key mechanism is controversial. Researches have shown that, as upstream regulatory elements of gene expression, enhancers ar involved in the expression of identity genes. In this study, we identified enhancers-mediated gene FOXO3 promoting MSC adipogenic differentiation by activating autophagy. METHODS: We integrated data of RNA sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq) and ATAC-sequencing (ATAC-seq) to find the identity gene FOXO3. The expression of FOXO3 protein, adipogenic transcription factors and the substrate of autophagy were measured by western blotting. The Oil Red O (ORO) staining was used to visualize the adipogenesis of MSCs. Immunohistochemistry was used to visualize the FOXO3 expression in adipocytes in bone marrow. Immunofluorescence was used to detect the expression of PPARγ and LC3B. RESULTS: During adipogenesis, enhancers redistribute to genes associated with adipogenic differentiation, among which we identified the pivotal identity gene FOXO3. FOXO3 could promote the expression of the adipogenic transcription factors PPARγ, CEBPα, and CEBPß during adipogenic differentiation, while PPARγ, CEBPα, and CEBPß could in turn bind to FOXO3 and continue to promote FOXO3 expression to form a positive feedback loop. Consistently elevated FOXO3 expression promotes autophagy by activating the PI3K-AKT pathway which mediates adipogenic differentiation. CONCLUSIONS: Pivotal identity gene FOXO3 promotes autophagy by activating PI3K-AKT pathway, which provokes adipogenic differentiation of MSCs. Enhancer-regulated adipogenic identity gene FOXO3 could be an attractive treatment for osteoporosis.


Assuntos
Adipogenia , Osteoporose , Humanos , Adipogenia/genética , Proteínas Proto-Oncogênicas c-akt/genética , PPAR gama/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteína Forkhead Box O3/genética , Fatores de Transcrição , Autofagia/genética
10.
J Hypertens ; 42(3): 484-489, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38009316

RESUMO

OBJECTIVE: The G -allele of FOXO3 SNP rs2802292 , which is associated with human resilience and longevity, has been shown to attenuate the impact of hypertension on the risk of intracerebral hemorrhage (ICH). We sought to determine whether the FOXO3 G -allele similarly attenuates the impact of hypertension on the risk of cerebral microinfarcts (CMI). METHODS: From a prospective population-based cohort of American men of Japanese ancestry from the Kuakini Honolulu Heart Program (KHHP) and Kuakini Honolulu-Asia Aging Study (KHAAS) that had brain autopsy data, age-adjusted prevalence of any CMI on brain autopsy was assessed. Logistic regression models, adjusted for age at death, cardiovascular risk factors, FOXO3 and APOE-ε4 genotypes, were utilized to determine the predictors of any CMI. Interaction of FOXO3 genotype and hypertension was analyzed. RESULTS: Among 809 men with complete data, 511 (63.2%) participants had evidence of CMI. A full multivariable model demonstrated that BMI [odds ratio (OR) 1.07, 95% confidence interval (CI) 1.01-1.14, P  = 0.015) was the only predictor of CMI, while hypertension was a borderline predictor (OR 1.44, 95% CI 1.00-2.08, P  = 0.052). However, a significant interaction between FOXO3 G -allele carriage and hypertension was observed ( P  = 0.020). In the stratified analyses, among the participants without the longevity-associated FOXO3 G -allele, hypertension was a strong predictor of CMI (OR 2.25, 95% CI 1.34-3.77, P  = 0.002), while among those with the longevity-associated FOXO3 G -allele, hypertension was not a predictor of CMI (OR 0.88, 95% CI 0.51-1.54, P  = 0.66). CONCLUSION: The longevity-associated FOXO3 G -allele mitigates the impact of hypertension on the risk of CMI.


Assuntos
Hipertensão , Longevidade , Masculino , Humanos , Longevidade/genética , Estudos Prospectivos , Genótipo , Hipertensão/complicações , Hipertensão/genética , Alelos , Proteína Forkhead Box O3/genética
11.
Cells ; 12(24)2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38132107

RESUMO

The high prevalence of sarcopenia in an aging population has an underestimated impact on quality of life by increasing the risk of falls and subsequent hospitalization. Unfortunately, the application of the major established key therapeutic-physical activity-is challenging in the immobile and injured sarcopenic patient. Consequently, novel therapeutic directions are needed. The transcription factor Forkhead-Box-Protein O3 (FOXO3) may be an option, as it and its targets have been observed to be more highly expressed in sarcopenic muscle. In such catabolic situations, Foxo3 induces the expression of two muscle specific ubiquitin ligases (Atrogin-1 and Murf-1) via the PI3K/AKT pathway. In this review, we particularly evaluate the potential of Foxo3-targeted gene therapy. Foxo3 knockdown has been shown to lead to increased muscle cross sectional area, through both the AKT-dependent and -independent pathways and the reduced impact on the two major downstream targets Atrogin-1 and Murf-1. Moreover, a Foxo3 reduction suppresses apoptosis, activates satellite cells, and initiates their differentiation into muscle cells. While this indicates a critical role in muscle regeneration, this mechanism might exhaust the stem cell pool, limiting its clinical applicability. As systemic Foxo3 knockdown has also been associated with risks of inflammation and cancer progression, a muscle-specific approach would be necessary. In this review, we summarize the current knowledge on Foxo3 and conceptualize a specific and targeted therapy that may circumvent the drawbacks of systemic Foxo3 knockdown. This approach presumably would limit the side effects and enable an activity-independent positive impact on skeletal muscle.


Assuntos
Sarcopenia , Humanos , Idoso , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Fator de Crescimento Insulin-Like I , Qualidade de Vida , Transdução de Sinais/genética , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo
12.
Cell Mol Biol (Noisy-le-grand) ; 69(10): 160-165, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37953568

RESUMO

Colorectal cancer (CRC) ranks third in cancer incidence and second in cancer mortality globally. MicroRNAs (miRNAs) are promising biomarkers and therapeutic targets for CRC diagnosis and treatment. The miR-155 is reported to induce radiation resistance in CRC. In this study, we aimed to further clarify the role and underlying mechanism of the miR-155 in CRC cell malignancy. We found that miR-155 was significantly up-regulated in CRC tissues. The results of loss-of-function experiments revealed that miR-155 deficiency suppressed the proliferative capacity, invasion, and migration of CRC cells. Moreover, the downstream target genes of miR-155 were screened, and miR-155 was demonstrated to directly bind to FOXO3a in CRC cells to negatively regulate FOXO3a expression. FOXO3a was downregulated in CRC tissues and the expression of FOXO3a and miR-155 was in negative correlation in CRC tissues. FOXO3a overexpression alone was revealed to inhibit CRC cell growth, migration and invasion. Additionally, rescue assays showed that FOXO3a silencing significantly reversed the inhibitory effect of miR-155 deficiency on CRC cell malignant behaviors. In conclusion, miR-155 induces malignant phenotypes of CRC cells including cell proliferation, migration and invasion by targeting FOXO3a, which might provide clues for the targeted therapy of CRC.


Assuntos
Neoplasias Colorretais , Proteína Forkhead Box O3 , MicroRNAs , Humanos , Carcinogênese/genética , Carcinógenos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Invasividade Neoplásica/patologia , Proteína Forkhead Box O3/genética
13.
Turk Neurosurg ; 33(6): 951-959, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37846530

RESUMO

AIM: To examine the role and mechanism of colorectal tumor differential expression (CRNDE) in brain injury induced by ischemicreperfusion. MATERIAL AND METHODS: Sh-SY5Y cells were cultured, and oxygen and glucose deprivation/reperfusion (OGD/R) injury tests were performed. The effects on SH-SY5Y cells were evaluated by the Cell Counting Kit-8 (CCK-8) assay, qPCR, apoptosis analysis, western blot analysis, ELISA, a luciferase reporter assay, and an RNA pull-down assay. RESULTS: Knockdown of CRBDE ameliorated SH-SY5Y cell impairment induced by OGD/R. CRNDE, the target of mir-489-3p, was directly bound to FOXO3. Mir-489-3p knockdown partially reversed OGD/R-mediated impairment in CRBDE knockdown SH-SY5Y cells. CONCLUSION: The results indicate that knockdown of lncRNA CRNDE ameliorates apoptosis and the inflammatory response in ischemia-reperfusion-induced brain injury through the mir-489-3p/FOXO3 axis. LncRNA CRNDE may represent a novel therapeutic target for brain injury.


Assuntos
MicroRNAs , Neuroblastoma , RNA Longo não Codificante , Traumatismo por Reperfusão , Humanos , Apoptose/genética , Proteína Forkhead Box O3/genética , Glucose , Inflamação , Isquemia , MicroRNAs/genética , MicroRNAs/metabolismo , Oxigênio , Reperfusão , Traumatismo por Reperfusão/metabolismo , RNA Longo não Codificante/genética
14.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37686468

RESUMO

Both FoxO transcription factors and the circadian clock act on the interface of metabolism and cell cycle regulation and are important regulators of cellular stress and stem cell homeostasis. Importantly, FoxO3 preserves the adult neural stem cell population by regulating cell cycle and cellular metabolism and has been shown to regulate circadian rhythms in the liver. However, whether FoxO3 is a regulator of circadian rhythms in neural stem cells remains unknown. Here, we show that loss of FoxO3 disrupts circadian rhythmicity in cultures of neural stem cells, an effect that is mediated via regulation of Clock transcriptional levels. Using Rev-Erbα-VNP as a reporter, we then demonstrate that loss of FoxO3 does not disrupt circadian rhythmicity at the single cell level. A meta-analysis of published data revealed dynamic co-occupancy of multiple circadian clock components within FoxO3 regulatory regions, indicating that FoxO3 is a Clock-controlled gene. Finally, we examined proliferation in the hippocampus of FoxO3-deficient mice and found that loss of FoxO3 delayed the circadian phase of hippocampal proliferation, indicating that FoxO3 regulates correct timing of NSC proliferation. Taken together, our data suggest that FoxO3 is an integral part of circadian regulation of neural stem cell homeostasis.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Proteína Forkhead Box O3 , Células-Tronco Neurais , Animais , Camundongos , Ciclo Celular , Divisão Celular , Relógios Circadianos/genética , Ritmo Circadiano/genética , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/fisiologia
15.
Cells ; 12(17)2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37681900

RESUMO

Sarcopenia has a high prevalence among the aging population. Sarcopenia is of tremendous socioeconomic importance because it can lead to falls and hospitalization, subsequently increasing healthcare costs while limiting quality of life. In sarcopenic muscle fibers, the E3 ubiquitin ligase F-Box Protein 32 (Fbxo32) is expressed at substantially higher levels, driving ubiquitin-proteasomal muscle protein degradation. As one of the key regulators of muscular equilibrium, the transcription factor Forkhead Box O3 (FOXO3) can increase the expression of Fbxo32, making it a possible target for the regulation of this detrimental pathway. To test this hypothesis, murine C2C12 myoblasts were transduced with AAVs carrying a plasmid for four specific siRNAs against Foxo3. Successfully transduced myoblasts were selected via FACS cell sorting to establish single clone cell lines. Sorted myoblasts were further differentiated into myotubes and stained for myosin heavy chain (MHC) by immunofluorescence. The resulting area was calculated. Myotube contractions were induced by electrical stimulation and quantified. We found an increased Foxo3 expression in satellite cells in human skeletal muscle and an age-related increase in Foxo3 expression in older mice in silico. We established an in vitro AAV-mediated FOXO3 knockdown on protein level. Surprisingly, the myotubes with FOXO3 knockdown displayed a smaller myotube size and a lower number of nuclei per myotube compared to the control myotubes (AAV-transduced with a functionless control plasmid). During differentiation, a lower level of FOXO3 reduced the expression Fbxo32 within the first three days. Moreover, the expression of Myod1 and Myog via ATM and Tp53 was reduced. Functionally, the Foxo3 knockdown myotubes showed a higher contraction duration and time to peak. Early Foxo3 knockdown seems to terminate the initiation of differentiation due to lack of Myod1 expression, and mediates the inhibition of Myog. Subsequently, the myotube size is reduced and the excitability to electrical stimulation is altered.


Assuntos
Proteína Forkhead Box O3 , Proteína MyoD , Miogenina , Qualidade de Vida , Sarcopenia , Idoso , Animais , Humanos , Camundongos , Proteína Forkhead Box O3/genética , Fibras Musculares Esqueléticas , Músculo Esquelético , Mioblastos , Miogenina/metabolismo , Proteína MyoD/metabolismo
16.
Clin Lab ; 69(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37702694

RESUMO

BACKGROUND: The purpose of this study was to explore the role of FOXO3 in gastric cancer (GC). METHODS: Data on gastric cancer and normal tissues were collected from the TCGA and GTEx databases. Survival analysis was performed with the Kaplan-Meier method, and the ENCORI online analysis tool was used to predict potential interaction miRNA. The MCPCOUNTER and Tumor Immune Dysfunction and Exclusion (TIDE) algorithm were used to predict the relationship between immune infiltration and FOXO3. Finally, gene set enrichment analysis (GSEA) was used to explore the potential pathways of FOXO3 during the development of GC. RESULTS: We found that mRNA expression level of FOXO3 was remarkably higher in tumor tissue than in normal tissue, and poor prognoses of GC patients were correlated with higher expression of FOXO3. We also found that hsa-miR-18a-5p and hsa-miR-18b-5p can interact with FOXO3 and that high expression of hsa-miR-18a-5p and hsa-miR-18b-5p predicted better prognoses in GC patients. TP53 mutation was significantly associated with high FOXO3 expression, while ARID1A mutation was associated with low FOXO3 expression. Multiple immune cells were found to be related to the expression of FOXO3, and lower expression of FOXO3 may be better suited to immune checkpoint blockade treatment. CONCLUSIONS: We find that FOXO3 is a potential oncogene and that the transcript level of FOXO3 is related to the mutation of TP53 and ARID1A. In addition, FOXO3 may influence immune infiltration and different signal pathways through sponge adsorption of miRNA to impact the prognoses of stomach adenocarcinoma patients.


Assuntos
Adenocarcinoma , MicroRNAs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , MicroRNAs/genética , Algoritmos , Proteína Forkhead Box O3/genética
17.
Cell Death Dis ; 14(8): 516, 2023 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573356

RESUMO

Urothelial bladder cancer (UBC) is one of the most prevalent malignancies worldwide, with striking tumor heterogeneity. Elucidating the molecular mechanisms that can be exploited for the treatment of aggressive UBC is a particularly relevant goal. Protein ubiquitination is a critical post-translational modification (PTM) that mediates the degradation of target protein via the proteasome. However, the roles of aberrant protein ubiquitination in UBC development and the underlying mechanisms by which it drives tumor progression remain unclear. In this study, taking advantage of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) 9 technology, we identified the ubiquitin E3 ligase ANAPC11, a critical subunit of the anaphase-promoting complex/cyclosome (APC/C), as a potential oncogenic molecule in UBC cells. Our clinical analysis showed that elevated expression of ANAPC11 was significantly correlated with high T stage, positive lymph node (LN) metastasis, and poor outcomes in UBC patients. By employing a series of in vitro experiments, we demonstrated that ANAPC11 enhanced the proliferation and invasiveness of UBC cells, while knockout of ANAPC11 inhibited the growth and LN metastasis of UBC cells in vivo. By conducting immunoprecipitation coupled with mass spectrometry, we confirmed that ANAPC11 increased the ubiquitination level of the Forkhead transcription factor FOXO3. The resulting decrease in FOXO3 protein stability led to the downregulation of the cell cycle regulator p21 and decreased expression of GULP1, a downstream effector of androgen receptor signaling. Taken together, these findings indicated that ANAPC11 plays an oncogenic role in UBC by modulating FOXO3 protein degradation. The ANAPC11-FOXO3 regulatory axis might serve as a novel therapeutic target for UBC.


Assuntos
Ubiquitina-Proteína Ligases , Neoplasias da Bexiga Urinária , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Subunidade Apc11 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proliferação de Células , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Metástase Linfática , Proteólise , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Neoplasias da Bexiga Urinária/genética
18.
Cell Signal ; 109: 110789, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37392861

RESUMO

Glioblastoma (GBM) is a malignant tumor characterized by poor prognosis and low overall survival (OS) rate. Identification of novel biological markers for the diagnosis and treatment of GBM is crucial to developing interventions to improve patient survival. GNA13, a member of the G12 family, has been reported to play important roles in a variety of biological processes involved in tumorigenesis and development. However, its role in GBM is currently unknown. Here, we explored the expression patterns and functions of GNA13 in GBM, as wells its impact on metastasis process. Results showed that GNA13 was downregulated in GBM tissues and correlated with poor prognosis of GBM. Downregulation of GNA13 promoted the migration, invasion and proliferation of GBM cells; whereas its overexpression abolished these effects. Western blots revealed that GNA13 knockdown and overexpression upregulated and inhibited the phosphorylation of ERKs, respectively. Moreover, GNA13 was the upstream of ERKs signaling to regulating ERKs phosphorylation level. Furthermore, U0126 alleviated the metastasis effect induced by GNA13 knockdown. Bioinformatics analyses and qRT-PCR experiments demonstrated that GNA13 could regulate FOXO3, a downstream signaling molecule of ERKs pathway. Overall, our results demonstrate that GNA13 expression is negatively correlated with GBM and can suppress tumor metastasis by inhibiting the ERKs signaling pathway and upregulating FOXO3 expression.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transdução de Sinais , Sistema de Sinalização das MAP Quinases , Regulação Neoplásica da Expressão Gênica , Neoplasias Encefálicas/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo
19.
Int J Biol Macromol ; 248: 125811, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467831

RESUMO

Circular RNA (circRNA) has been implicated in liver fibrosis and modulated by multiple elusive molecular mechanisms, while the effects of N6-methyladenosine (m6A) modification on circRNA are still elusive. Herein, we identify circIRF2 from our circRNA sequencing data, which decreased in liver fibrogenesis stage and restored in resolution stage, indicating that dysregulated circIRF2 may be closely associated with liver fibrosis. Gain/loss-of-function analysis was performed to evaluate the effects of circIRF2 on liver fibrosis at both the fibrogenesis and resolution in vivo. Ectopic expression of circIRF2 attenuated liver fibrogenesis and HSCs activation at the fibrogenesis stage, whereas downregulation of circIRF2 impaired mouse liver injury repair and inflammation resolution. Mechanistically, YTHDF2 recognized m6A-modified circIRF2 and diminished circIRF2 stability, partly accounting for the decreased circIRF2 in liver fibrosis. Microarray was applied to investigate miRNAs regulated by circIRF2, our data elucidate cytoplasmic circIRF2 may directly harbor miR-29b-1-5p and competitively relieve its inhibitory effect on FOXO3, inducing FOXO3 nuclear translocation and accumulation. Clinically, circIRF2 downregulation was prevalent in liver fibrosis patients compared with healthy individuals. In summary, our findings offer a novel insight into m6A modification-mediated regulation of circRNA and suggest that circIRF2 may be an exploitable prognostic marker and/or therapeutic target for liver fibrosis.


Assuntos
MicroRNAs , RNA Circular , Camundongos , Animais , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , Proteína Forkhead Box O3/genética , Proteínas de Ligação a RNA/metabolismo
20.
J Alzheimers Dis ; 95(1): 79-91, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483002

RESUMO

BACKGROUND: It is well established that mid-life hypertension increases risk of dementia, whereas the association of late-life hypertension with dementia is unclear. OBJECTIVE: To determine whether FOXO3 longevity-associated genotype influences the association between late-life hypertension and incident dementia. METHODS: Subjects were 2,688 American men of Japanese ancestry (baseline age: 77.0±4.1 years, range 71-93 years) from the Kuakini Honolulu Heart Program. Status was known for FOXO3 rs2802292 genotype, hypertension, and diagnosis of incident dementia to 2012. Association of FOXO3 genotype with late-life hypertension and incident dementia, vascular dementia (VaD) and Alzheimer's disease (AD) was assessed using Cox proportional hazards models. RESULTS: During 21 years of follow-up, 725 men were diagnosed with all-cause dementia, 513 with AD, and 104 with VaD. A multivariable Cox model, adjusting for age, education, APOEɛ4, and cardiovascular risk factors, showed late-life hypertension increased VaD risk only (HR = 1.71, 95% CI = 1.08-2.71, p = 0.022). We found no significant protective effect of FOXO3 longevity genotype on any type of dementia at the population level. However, in a full Cox model adjusting for age, education, APOEɛ4, and other cardiovascular risk factors, there was a significant interaction effect of late-life hypertension and FOXO3 longevity genotype on incident AD (ß= -0.52, p = 0.0061). In men with FOXO3 rs2802292 longevity genotype (TG/GG), late-life hypertension showed protection against AD (HR = 0.72; 95% CI = 0.55-0.95, p = 0.021). The non-longevity genotype (TT) (HR = 1.16; 95% CI = 0.90-1.51, p = 0.25) had no protective effect. CONCLUSION: This longitudinal study found late-life hypertension was associated with lower incident AD in subjects with FOXO3 genotype.


Assuntos
Doença de Alzheimer , Demência Vascular , Hipertensão , Masculino , Humanos , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/genética , Estudos Longitudinais , Incidência , Demência Vascular/epidemiologia , Genótipo , Hipertensão/epidemiologia , Hipertensão/genética , Fatores de Risco , Proteína Forkhead Box O3/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...